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Outline 

• Traditional vs. validation experiments 
–  Goals of model validation 
–  Trade-off in model validation 
–  Design of validation experiments 

• Structure of computational simulation 
–  Non-deterministic simulation 
–  Validation versus calibration 

• Areas in need of improvement 
–  Experimental activities 
–  Computational activities 

• Conclusion and recommendations 
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Traditional Experiments vs. 
Validation Experiments 

Goals of three types of traditional experiments: 

1.   Improve the fundamental understanding of the physics: 
-  Ex: fluid dynamic turbulence experiment; experiment for understanding 

evaporation and condensation in multi-phase flows 

2.   Improve the mathematical models of some physical phenomena: 
-  Ex: experiment to determine reaction rate parameters in reacting flow; 

experiment for calibrating parameters in two-equation turbulence models 

3.   Assess subsystem or complete system performance: 
-  Ex: performance of a new combustor design in a gas turbine engine; 

tests of a new multi-element flap design for a wing 

•  Model validation experiment 
–  An experiment that is designed and executed to quantitatively estimate a 

mathematical model’s ability to simulate a physical system or process. 

•  The computational model developer or code user is the customer. 
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Goals of Model Validation 
• Tactical goals of validation: 
–  Quantification of the effects of mathematical modeling assumptions 

and approximations by comparison of simulation results with 
experimental measurements 

–  Identification of the effect of physics modeling weaknesses, i.e., 
quantification of model form uncertain 

–  Model form uncertainty is distinct from model parameter uncertainty 

• Strategic goals of validation: 
–  Improve the separation of model form uncertainty from all other 

forms of uncertainty, particularly model parameter uncertainty 
–  Improve physics modeling to improve predictive capability 

• What are the crucial elements of model validation? 
–  Experimental measurement of the important input data for the model 
–  Validation metrics: mathematical operators that quantify the 

difference between simulation and experimental results 
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Trade-Off in Model Validation Experiments 

(Ref: AIAA Guide, 1998) 
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Design of Validation Experiments 
• Key elements in the design of validation experiments: 
–  Modelers and experimentalists jointly design the experiment 
–  Experimentalist should measure all important model input data 
–  Achievement of a blind prediction is the most effective approach 
–  Experimentalist should estimate uncertainty on both input data 

and system response quantities measured 

• Five categories of input data: 
–  System geometry 
–  Initial conditions 
–  System physical parameters 
–  Boundary conditions 
–  System excitation 

• What makes validation particularly difficult? 
–  Connecting modelers and experimentalist, on the same time frame 
–  Separation of input uncertainty and model form uncertainty 
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Structure of Computational Simulation 

• Examples of uncertainty in input data for validation experiments: 
–  Geometry; detailed measurement of the actual as-tested geometry 

–  Initial conditions; flow field at the beginning of engine-unstart 
–  Physical parameters; non-equilibrium chemistry in a high enthalpy facility 
–  Boundary conditions; spatial and temporal characterization of inflow 

conditions in a wind tunnel 
–  System excitation; acoustic excitation of a turbulent boundary layer 
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Where Do We Stand in Model Validation? 

• Common approach to validation is actually model calibration: 
–  Input data and parameters in the model (either scalars or 

probability distributions) are calibrated to improve agreement 
with experimental data 

–  When model validation (i.e., model accuracy assessment) is 
mixed with model calibration, it underestimates model form 
uncertainty by adjusting input data uncertainty 

• To improve confidence in our simulations, validation should: 
–  Improve the separation of calibration and validation activities 
–  Emphasize the assessment of simulation accuracy by using 

blind-predictions of experimental data 
–  Improve cooperation and teamwork between experimentalists 

and computational analysts so as to conduct improved validation 
experiments 
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Areas in Need of Improvement: 
Experimental Activities 

•  Improved spatial and temporal characterization of inflow 
boundary conditions for CFD simulation 

•  Improved spatial and temporal measurement of flow in an 
empty test section of a wind tunnel, including the tunnel walls 

•  Improved measurement and documentation of time-dependent 
quantities, especially in high-enthalpy shock tunnels 

• Comparison of measurements using different experimental 
techniques, e.g., PIV versus LDV 

•  Improved experimental uncertainty estimation by way of: 
–  Comparison of run-to-run and facility-to-facility variability 
–  Comparison of runs with the test article at different locations in 

the test section 

•  Improved assessment of experiments regarding completeness 
of information for model validation 

9



Areas in Need of Improvement: 
Computational Activities 

• Use of simulation to guide the design and execution of 
validation experiments, e.g., use of sensitivity analyses 

•  Improved code verification testing and documentation 

•  Improved quantification and documentation of numerical error 
due to temporal and spatial discretization 

• Willingness to compute the flow in the entire test section 

• Construction of improved validation metrics for unsteady flows 

•  Improve cooperation and teaming with experimentalists 

This is the responsibility of management and funding sources 
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Conclusions and Recommendations 
• “Quality” of a validation experiment should be ranked on the 

following characteristics (in priority order): 
–  Measurement and documentation of important input data needed for 

the simulation 
–  Estimation of experimental uncertainty on both input and output data 
–  Assessment of model accuracy by way of a blind prediction 
–  Separation of model calibration and model validation 

• Validation is focused on simulation of the flow field inside the 
wind tunnel or in flight 

• The burden of improving the quality of validation experiments 
falls primarily on experimentalists 

• Sponsors should recognize the need to fund new validation 
experiments 

This is the path to critically assessing our simulations 
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